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Introduction Motivation

Applications

Distance of two shapes
or: How similar is one shape compared to
another?

Applications:

Computer vision/computations
Molecular biology
Sign recognition
Morphing
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Introduction Motivation

The Problem

Input:

two shapes (set of points), P,Q ⊂ R2

allowed transformations T of P,Q

Output:
f ∈ T , which solves one of the following problems:

Exact matching

Approximated matching

Optimal matching
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Introduction Motivation

Transformations

We define a transformation as follows:

Transformation

A transformation f is a function which maps one shape to another:
Let A be a shape, e.g. a set of points:
A = {a ∈ R2|a ∈ A}
f : R2 → R2

Applying f on a shape means transforming of each element by f :
f(A) = {f(a)|a ∈ A}
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Introduction Motivation

Transformations

We look at the following transformations:

Translation by t

Rotation by ϑ

Scaling by a

t

a

Combinations

Rigid Motion means translation and rotation
Similarity means translation, rotation and scaling

Rigid Motions are interesting!
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Introduction Hausdorff-Distance

Hausdorff-Distance

QP
?

What is the distance between two shapes?
How similar are two shapes?
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Introduction Hausdorff-Distance

Hausdorff-Distance

Definition

The Hausdorff-Distance is the maximum of the minimal distances:
δH(P,Q) = maxp∈P minq∈Q ||p− q||2

minp

q
q‘q‘‘ p

p‘
p‘‘

q

max
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Introduction Hausdorff-Distance

Overview of the problems

Input: P,Q ⊂ R2 and T of P,Q

Output: f ∈ T with property of matching:

Exact matching

δH(f(P ), Q) = 0

Approximated matching

with ε as allowed error tolerance
δH(f(P ), Q) ≤ ε
Optimal matching

δH(f(P ), Q) = minf ′∈T δH(f ′(P ), Q)
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Matching of Point Patterns Exact Matching

Exact matching

Definition

An exact matching of two sets P,Q is a valid function which transforms
each point p ∈ P to a point q ∈ Q.
or: δH(f(P ), Q) = 0

Given: sets P,Q and T = Ttranslations

Output: f(x) ∈ Ttranslations

Exact matching means a translated point is equal to a point of q:
∀p ∈ P : p′ = f(p) = q, q ∈ Q
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Matching of Point Patterns Exact Matching

A simple algorithm for rigid motions

1 Compute the centroids cP , cQ
2 Sort all points of P,Q as pairs of (Φi, ri) and

put them into a sequence

3 A matching is found, if the sorted sequence of
P is a cyclic shift of the sequence of Q

4 If there is a matching, just compute the
transformation by looking at the first pair of
each P,Q

Runtime: O(n log(n))
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Matching of Point Patterns Exact Matching

Extend with Scaling

Considering Scaling is simple:

Start the algorithm by finding a scaling factor
1 Compute the diameters of P,Q
2 The scaling factor a is dP

dQ

Computing scaling needs additional linear time
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Matching of Point Patterns Approximated Matching

Exact matching does not work!

Exact matching 6= Reality

Approximation is more effective

Problem: Approximated Matching

Approximated matching means matching all points p ∈ P to the ε-
neighborhood of a point q ∈ Q.

one-to-one matching

many-to-one matching

For a given P,Q, T, ε: is there a matching?

For a given P,Q, T : find the smallest ε
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Matching of Point Patterns Approximated Matching

One-to-one Matching: Approaching under rigid motions

Given: sets A,B and T = Trigid motions

Output: Is there a matching f ∈ T so, that B is matched to A within ε?

For each pair (bi, bj) find an interval of degree Φ

All relationships are edges in a bipartite graph

A matching does exist, if there is a perfect matching in this graph
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Matching of Point Patterns Approximated Matching

One-to-one Matching: Approaching under rigid motions

Runtime of this approach:

1 Procedure has to be done n4 times for all 4-tuples

2 For each procedure look at all 2-tuples’ curves and calculate intervals

⇒ Analysis showed runtime: O(n8)

Other approaches:

Translation only in O(n1.5 log(n))

Disjoint ε-neighborhoods lead to O(n4log(n))

+ Assuming, ε is not too close at optimal εmin: O(n2log(n))
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Matching of Point Patterns Approximated Matching

Many-to-One Matching: Hausdorff-Distance

Matching by minimizing the Hausdorff-Distance

Input: Sets P,Q with m = |P |, n = |Q|

Many-to-One Matching

Hausdorff-Distance computation in

O(mn) by computing straight forward
O(m+ n log(m+ n)) by using Voronoi-Diagrams

General idea:
1 Take a transformation
2 Compute the new Hausdorff-Distance
3 Compare the result and repeat until a good transformation has been

found
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Matching of Point Patterns Approximated Matching

Many-to-One Matching: Goodrich approximation

1 For one diametrically opposing pair of points p1, p2 ∈ P :

2 Do a best match to each pair of points q1, q2 ∈ Q
3 Take the matching with the best resulting Hausdorff-distance
Tmin = minT δh(T (P ), Q)
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Matching of Point Patterns Approximated Matching

Many-to-One Matching: Goodrich approximation

1 For one diametrically opposing pair of points p1, p2 ∈ P :

2 Do a best match to each pair of points q1, q2 ∈ Q
3 Take the matching with the best resulting Hausdorff-distance

Runtime of the Goodrich approximation:
m = |P |, n = |Q|

1 O(m)

2 O(n2)

3 O(n2m log(n))

Runtime is O(n2m log(n))
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Matching of Point Patterns Pattern recognition

Alignment Method

Given a model M and a scene S:
Does S contain M?

Reference Frame

A reference frame of a set M in dependency of two offset points a, b ∈ M
represents a new coordinate system with properties:

a is assigned as the origin (0, 0)

b is assigned as an alignment vector (1, 0)

all other points relate to these two points
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Matching of Point Patterns Pattern recognition

Alignment Method

Given a model M and a scene S:
Does S contain M?

The Algorithm:

1 Create reference frames for each pair a, b ∈M
2 Create reference frames for each pair p, q ∈ S
3 Find one reference frame of M , whose points lie all in a
ε-neighborhood of a reference frame of S
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Matching of Point Patterns Pattern recognition

Alignment Method

Provides Similarity-Transformation

Exhaustive method

Worst-case runtime is O(|M |3|S|2 log(|S|))

Question: Given multiple scenes Si, does one of them contain M?
or: Given multiple models Mi, does S contain a model Mi?

Solution: Hashing of models and scenes

Voting in hashtables
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Matching of Point Patterns Pattern recognition

Short Summary: Matching of Point Patterns

Algorithms:

Exact matching: Sorting and searching for vectors

Approx matching: Theoretical argumentation

With respect to the Hausdorff-distance: Goodrich Approximation

Pattern recognition: Alignment Method

Outlook:

3D with projections

Randomization? - Not yet
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Matching of Curves & Areas

The difference of line segments and point sets

New Problem

Given two sets of line segments A,B with cardinalities n = |A|,m = |B|.

infinite points

Hausdorff-Distance:

harder to compute
with voronoi diagram intersections: O(n log(n))
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Matching of Curves & Areas Approximated Matching

Translations for approximated matching

Definition

A racetrack Aε is a disk of radius ε around a given line segment
Aε = A⊕ Cε, where Cε is a circle with radius ε

2

Example: set A, consisting of a single line seqment
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Matching of Curves & Areas Approximated Matching

Translations for approximated matching

A translated racetrack

Let Aεi be the intersection of Aε and the translated racetrack Aε by a vector
bi
Aεi = Aε ∩ (Aε ⊕ bi)
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Matching of Curves & Areas Approximated Matching

Translations for approximated matching

Theorem

There is a matching exactly if S =
m⋂
i=1

Aεi 6= ∅.

This is aquivalent to the existence of a cell with depth m

Depth determination with line sweep algorithm

Complexity: mn arcs and lines, (mn)2 intersections points

⇒ Translations are performed in O((mn)2 log(mn))
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Matching of Curves & Areas Approximated Matching

Extend with Rotations

Procedure:

1 Rotate arrangement around the origin by θ ∈ (0, 2π)

2 Translate as before

Difficulty: Arrangement changes with rotation

Looking at events, when the arrangement changes

Rigid motions are performed in O(m3n3 log(mn))
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Matching of Curves & Areas Approximated Matching

Idea of reference points

Definition

A reference point rA is a representive point of a shape A so that a perfect
matching of A to B bounds the distance of T (rA) to rB by a constant
factor a, which is called the quality of the reference point
a δ(Tperfect(A), B) = δ(Tperfect(rA), rB)

Which reference point has the higher local quality?
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Matching of Curves & Areas Approximated Matching

Reference point for translation

Theorem

Translating A to B by matching rA to rB is at most a+ 1 times worse
than the optimal matching

Finding a reference point as above needs linear time

Translating rA to rB needs constant time

The translation algorithm has a runtime of O(n)
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Matching of Curves & Areas Approximated Matching

Steiner point for rigid motions

What about rigid motions?

Center of the boundary of the convex hull: a = 4π + 4 ≈ 16.6

Steiner point:

Input has to be a convex body
Works for similarities
a = 4

π ≈ 1.27 (2D)
a ≈ 1.5 (3D)
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Matching of Curves & Areas Approximated Matching

Steiner point for rigid motions

1 Rotate lower-left Reference Point around A
2 Keep orthogonal tangents to A
3 Take the average over all those rotated points

Support function hA(Φ) is largest extent in direction of Φ

The desired point is hA(Φ)

(
cos Φ
sin Φ

)
Average is found by 1

π

2π∫
0

hA(Φ)

(
cos Φ
sin Φ

)
dΦ
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Matching of Curves & Areas Better distance for shapes

Distance for line segments

Problem:
Two sets A,B with quite small Hausdorff-distance
δH but high disparity

Better description of distance

The Fréchet Distance is the greatest distance which can appear when walk-
ing along two monoton paths through both given shapes
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Matching of Curves & Areas Better distance for shapes

Fréchet Distance

Parametrization with a P/Q - diagram

Input: Polygonal chains of line segments P,Q and distance ε

Output: True, if δF (P,Q) ≤ ε

P/Q - diagram needs runtime O(mn) with m = |P |, n = |Q|
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Matching of Curves & Areas Better distance for shapes

Short Summary : Matching of curves & areas

Shapes are more complex then sets of points

Distances of curves are different from point patterns

Methods:

Racetrack intersections

Reference Point approximation

Fréchet Distance
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Shape Interpolation

Introduction

Definition

Let P and Q be two shapes of size m = |P |, n = |S|. Morphing describes
the mapping of P to Q.

The general process of morphing:
1 Find features and match them
2 Motions for each feature pair
3 Transformation = combining motions + constraints

For simplicity we will look on polygonal chains
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Shape Interpolation Polygonal chain matching

Linear chain matching

1 Construct a grid of P ×Q
2 Monotone walkthrough the grid represents matching
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Shape Interpolation Polygonal chain matching

Linear chain matching

Optimal path in O(nm) with dynamic programming

What are suitable matching constraints?

Shortest distance

parallel matching line segments

Last step:

For each matching (p, q) ∈ P ×Q do a linear mapping
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Shape Interpolation Difficulties

Difficulties with chain matching

Goal: minimize intersections

Reason: Choosing the wrong origin from the shape

Solution: Select constraints

e.g. keep parallel sides while morphing
runtime: O(n log(n))
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Conclusion

Lessons learned

Definition, features and similarities of shapes
elements of a shape
distance
transformations

Approximative approaches matching two sets of points
Goodrich approximation

Finding a shape in another one
Alignment method

Areas are point sets with infinite elements
Complex shapes
Reference Points

Outlook:

Three dimensions

Shape simplification

Redundancy
Complexity
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Conclusion

Sources

Alt, H., Guibas, L. (1999) Discrete Geometric Shapes: Matching,
Interpolation, and Approximation given in Sack, J., Urrutia, J. (1999)
HANDBOOK OF COMPUTATIONAL GEOMETRY

Goodrich, M., Mitchell, J., Orletsky, M. (1999) Approximate Geometric
Pattern Matching under Rigid Motions

Pelletier, S. (2002) Computing the Fréchet distance between two
polygonal curves

Alt, H., Aichholzer, O., Rote, G. (1994) Matching Shapes with a
Reference Point
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