
A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 1

HBase on top of HDFS
Kevin Böckler

F

Abstract. Cloud-Computing relies more and more on
large-scale database systems which are able to store
huge amounts of data in a fast and reliable fashion.
While Google has developed its BigTable solution, with
the Hadoop filesystem Apache reproduces this concept
and builds a distributed file and database system out of
single, largely spread components. This paper reviews
Apache’s implementation and focuses on main concepts
of the underlying filesystem and the communication be-
tween single entities. At the end a small proof of concept
is shown by setting up a single-machine database cluster.

1 OVERVIEW

THIS paper is about describing mechanisms of the
Hadoop file and database system which comprises

of two parts: Chapter 2 shows the basic idea of dis-
tributed file systems. This is a concept Apache uses
for implementing their underlying filesystem shown in
Chapter 3. Upon this layer, Hadoop comes up with
the second part: HBase - a database implementation -
presented in Chapter 4. The resulting features and use
cases can be seen in Chapter 5. A small demo setup
targets the easy-to-use Java-API1 and will deliver small
facts in a brief overview in Chapter 6.

2 DISTRIBUTED FILE SYSTEMS

S TORAGE in CC2 always comes with huge amounts
of data which are uploaded and downloaded from

distinct regions by many users. From the view of a client,
each file should be located as near as possible to the
reader to accomplish lower latencies and higher data
throughput. For these requirements not a lone server can
serve all the network requests, instead several servers
should be spread among the field to deal with Big Data.
The most important factors of storing in a DFS3 will be
given in the next sections. Right after the implementation
of the Hadoop’s version of a DFS is presented.

2.1 Scalability
When many clients are using a Cloud Service, the re-
sulting high server loads cannot be handled by a single
centralized server. Hundreds or thousands of users ac-
cess a resource at the same time while adding data with
ideally no time-costs when doing database tasks. The

1. Application programming interface
2. Cloud Computing
3. Distributed File System

overall performance of a DFS should degrade only very
moderately when writing or reading huge amounts of
data.

2.2 Transparency
Clients of a DFS don’t want to know anything about
storage locations of the server holding the actual data.
Instead addresses with logical file names should be used
which are resolved to a connection to the host whenever
a request is made. Hence the client does not directly
know, where the file comes from, whether the data is
split up among multiple servers or the data will be
read from the original file or a replicated one. Often
addresses look like UNIX pathnames such as /a/b/c.
These addresses are resolved by the so called pathname
traversal which follows the root node until the last child
node has been found.

One differentiates between the terms Location Trans-
parency and Location Independeny, the former describes
the presented concept of hiding a real location of data
while the latter means that the file name stays the same
if the linked resource is moved - due to server crashes
or file replication. More information about transparency
are provided by Levy and Silberschatz [1].

2.3 Fault Tolerance
Writing data to a DFS leads to two major requirements:
first a file has to be available so that whenever a request
is made the client can read or probably write to this
file. Next to availability there is Robustness which implies
a file survives a hardware failure - in that case the
file can be recovered by other machines, e.g. by using
replications. File replications play a big role in DFS as
so called replica increase the robustness immensely by
leading to higher synchronization costs: each file write
now has to be reflected to all replica and probably cached
versions of all clients. Caches will be covered in section
2.5.

Also mention that using stateless connections will have
less data loss, because the server gets information on
every incoming request. Whereas stateful connections
allow more efficient communication between the server
and the client.

2.4 Semantics
Semantics describe the access-pattern of resources in the
given DFS. It covers synchronization when it comes to



A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 2

write access. The following ones are commonly used and
listed by Levy and Silberschatz [1]:

UNIX Semantics. Every single write to a file is syn-
chronized and reflected to all replica.

Session Semantics. On a opened session (Open File)
the most recent data is fetched and an update and
reflection is only made when the session is closed (Close
and Flush File).

Immutable Semantics. Once a file has been written it
can not be modified (immutable) - it is declared as being
shared and therefore is read-only.

Transaction-like Semantics. The same as Session Se-
mantics but also locks the file while a session is opened
due to concurrency issues.

2.5 Remote-Access

Accessing data results in either doing a Remote Service
Request or having the data in the cache. When resources
do not change too frequently in the cloud, a client is
supposed to cache data because reads will be more
efficient. Caching data trades off lower access times
against issues with reliability and autonomy since caches
are not validated by the DFS. Hence the client deals with
validation including the frequency doing those checks.

In real applications, clients often cache their own
writes until a certain amount of flushable data has been
reached. The collected data is then sent to the server to
reduce a high number of low-payload-calls. Often this
is a better approach then immediately send every chunk
to the server since servers also tend to use big file block
sizes (of several MB4).

3 HDFS5 - AN IMPLEMENTATION OF A DFS

B Y implementing a DFS not all of the criteria can
be met. There always occur tradeoffs when im-

proving one property to the costs of another one (e.g.
speed against throughput). This section explains the
architecture and workflow of a the HDFS explained by
Borthakur [2] and will afterwards give a summary of
which requirements are satisfied.

3.1 Architecture of HDFS

The domain of HDFS is split into so called clusters
which can spread all over the network and allow a
scalable infrastructure. Figure 1 shows such as cluster.
Every cluster is comprised of one NameNode and mul-
tiple DataNodes. The former has the task to hold meta
data of the underlying stored files, i.e. file names and
their distribution of blocks among the DataNodes. The
latter execute the task to write the actual data of files
to the disk. Therefore a file is typically split into file
blocks of 64 MB. Each of these can end up stored in
a different DataNode. When a client writes a file to a

4. MegaByte
5. Hadoop Distributed File System

HDFS cluster, it asks the NameNode for where to put
the blocks of this file which will answer with addresses
to the concerning DataNodes. Hence real throughput of
data never leads through the NameNode which will lead
to a scalable distribution of file traffic. This distributed
file write operation is highlighted blue in Figure 1. The
client can call operations on the NameNode like opening,
closing and renaming a file. The actual write and read
process is done within a connection to a DataNode.

NameNodes hold meta data in two structures: one is
the locally persisted file FsImage which holds all the
information such as the host namespace or modifica-
tion timestamps. Also block addresses of Datanodes or
indices to files are stored in this structure. The other
one is called EditLog. It represents the same data as
the FsImage but hold those information in the main
memory. Each client operation, which changes meta
data, ends up as a record in the EditLog. The NameNode
will persist all records of the EditLog to the FsImage at
a so called Checkpoint. These processes occur on node
startup - after the Safemode shown in Section 2.3 has
finished - or at given intervals.

3.2 File semantics and replication

Files in HDFS are designed to have Immutable seman-
tics which were described in Section 2.4. Therefore once
a file is written the HDFS never again has to deal with
synchronizing updates to the stored files. Once a file is
written and closed it is handled as being shared. This
access pattern is called write-once-read-many (WORM).

A file is started to being replicated while creat-
ing/writing it. One result is a faster access time so clients
from all over the place can read this file, because a replica
of the file will be located to a DataNode next to the
client. The other important reason for replication is fault
tolerance: if a DataNode crashed or gets unavailable in
the network a file should better be available in multiple

Figure 1: HDFS Architecture: One Cluster



A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 3

places. NameNodes are responsible for managing repli-
cations - see more in Section 3.3.

The replication process while writing is shown in Fig-
ure 2: a file is stored in block 3,5,7 when the figure shows
the storage of block 3. Normally a client writes chunks of
data (4 KB6) to the first DataNode. This DataNode will
persist the data and simultaneously push this chunk to
the next DataNode. That process is called Pipelining. By
default HDFS clusters use a replication-factor of 3. The
strategy is to store the first replica in the local rack and
the second one in an external rack. A rack is comprised
of DataNodes within one region and hence the nodes
have a similar network context (same latencies) or may
be unavailable all at once (if a shared DNS7 node fail).

To allow greater scalability the storage capacities of
DataNodes can be rebalanced. If a DataNode reaches
a storage percentage beneath a certain threshold, the
NameNode can ensure other DataNodes to move their
data to the less used one so all DataNodes end up in
having a more equal file amount compared to each other.

3.3 Fault Tolerance
In Section 2.3 the term Robustness was named. It means
making a file recoverable even if the hardware fails. In
both cases, only a network issue or a hardware failure of
a DataNode server, files are not accessible from a client.
File replication solved this problem by making sure,
enough redundancy exists among the scalable network.
NameNodes therefore have some managing tasks: they
watch over their underlying DataNodes and send orders
to replicate or re-replicate files (in case one replica has
been lost). Hence DataNodes have to make sure, that
they are still alive. This is done by a so called Heartbeat
message periodically sent by the DataNode to the Na-
meNode. If a DataNode gets unavailable, the NameNode
won’t receive any more Heartbeat messages and as a
result will issue other DataNodes to recover and re-
replicate its lost data.

6. KiloByte
7. Domain Name Space

Figure 2: Replication of a file block

When a NameNode starts up, at that process it
will begin working in Safemode-state. In that state, a
NameNode requests Blockreports from its DataNodes
to get an overview of all the hosted file blocks and
their replication-factor. The NameNode remains in the
Safemode-state until a certain part of all file blocks are
checked to have a minimum amount of replicas alive. If
replicated blocks are missing, the NameNode will issue
new replication procedures.

3.4 HDFS Summary
The HDFS architecture of clusters and their managing
NameNodes actually allow a great scalability among
widely spread clients. They can always connect to cluster
which is located near a client and data is supposed to
be replicated all along the global network.

For HDFS-Clients the file system is transparent to
some point, meaning file names are represented UNIX-
like without giving information about its physical stor-
age location. Although if a client really wants to read
or write data, it has to connect to one or more distinct
DataNodes to do I/O8-Operations.

Replication of data leads to tremendous fault toler-
ance and robustness of stored files. With the help of
NameNodes, failovers are done very transparently and
fast. Availability and accessibility of data is provided by
the central address management of a NameNode.

In contradiction to these advantages of HDFS making
this file system useful for application in CC-services,
there is the single-point-of-failure when it comes to
NameNodes. Reliability of these nodes is not truly given
because of no overlying observer or network which
maintains the NameNode of the working cluster.

4 HBASE

DATABASES are always used when storing, changing
and reading structured data comes into place. In

CC data storage has to be very fast accessible and
reliable. In the past relational SQL databases were used
for companies to store their data. Nowadays however
the importance for NoSQL databases arises. This chap-
ter will give a brief overview about the differences of
NoSQL databases compared to relational ones. HBase as
a NoSQL database will be introduced right after. Goals,
applications and the architectural design of the Hadoop
database solution on top of HDFS will be presented.

4.1 NoSQL database systems
The term NoSQL does not stand for one distinct name
but means something like Not Only SQL or Not Relational
- compare Cattell [3]. He also states out some key
features which differentiates NoSQL and SQL databases.

First NoSQL systems can scale horizontally on many
(distributed) servers. Therefore data can be replicated

8. Input / Output



A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 4

throughout this scaled server landscape. Also requests
and calls are more simple in a NoSQL system allowing
easier and more efficient access to database objects. This
is because SQL requires statements which NoSQL does
not. Efficiency in storing and indexing data is higher in
NoSQL databases since indexes and main memory can
be distributively used. While SQL databases have got a
static database scheme where changing it is difficult at
some point of time, NoSQL systems provide a dynami-
cally changeable format so new attributes can easily be
added throughout use time. Another important feature
of NoSQL systems is the weaker concurrency model
which is required to be used. This will be explained in
the next section.

4.1.1 Concurrency Model of database systems
There are two models which describe concurrency access
on shared data in general. ACID9 provides transactional-
like properties which make sure, that data is always
available and up-to-date. Every change is immediately
reflected to all copies (replications and caches). In a
distributed system this concurrency model is very hard
to achieve.

In contrast to ACID there exists BASE10 which is a
weaker model and therefore suitable for NoSQL systems.
It demands only an eventually consistent reflection of data,
so changes are not immediately written to all files so it
might take some time until each client reads the most
recent version.

The term Concurrency Control is related to the way a
database system deals with concurrent accesses on the
same resource. They are ACID, MVCC11 - clients can
create multiple writes on the same file at once - or Locks -
a file is exclusively opened to write by one client. HBase
uses the last concurrency control model.

4.2 Reasons for HBase
HBase implements an Extensible Record Store which is
a NoSQL-database system. Besides Extensible Record
Stores and Relational Stores (SQL systems) there are
some more types of stores which are presented by Cattell
[3]. This kind of store represents a database with each
row having a primary key. Usually when reading rows
this is done by requesting a so called range rather than
selecting a distinct row by an index function (such as
hashing).

Efficiency. Because of this Store implementation,
HBase features efficient range queries and sorting tech-
niques using B-Tree indexing. Updates to HBase are
done efficiently by storing them as durable change
records to a log file - see more in Section 4.3. To receive
efficient read access HBase uses MapReduce to process
data. Konishetty et al [4] give some more details on
Hadoop and MapReduce. Moreover a client can read

9. Atomicity, Consistency, Isolation and Durability
10. Basically Available, Soft state, Eventually consistent
11. Multi version concurrency control

multiple rows per single fetch-request which results in
faster per-row access times. Khetrapal et al [5] did a case
study about reads and writes times - also by observing
differences between sequential and random access of
rows.

Storage capacities. HBase is developed to store
BLOB12s in each single column. Database tables also tend
to have millions of rows. Thus using HBase allows to
manage huge amounts of data while it is only suggested
to use HBase when having these demands of huge data
storage.

Scaling. While HBase is a NoSQL system it allows
great horizontal scaling and an extensible data model.
Accordingly fields of a database row are packed together
in so called Column Families which are stored distribu-
tively and independently. Hence it is easy to add new
column families at run time.

Atomic operations. As stated in the section before
HBase uses the Locks concurrency control so each row
operation is locked for writing by one client exclusively.
This allows atomic access to a single row and thus
provides strong consistency.

Transparency. Another huge advantage is that the
whole process of partitioning and distributing data is
done transparently so the user of HBase will not know
anything about it.

Fault-Tolerance. Underlying HDFS files, which are
stored by HBase, are treated fault-tolerant (compare
Section 3.3). In general that means a crash of a DataNode
is detectable and files are transparently replicated and
restored to achieve robustness. HBase additionally al-
lows configurations for writing data very fast to the hard
drive rather than keeping them in fault-prone memory
- depending on the client’s needs.

API Support. HBase provides a Java-API, Thrift-API,
REST-API and drivers for JDBC13/ODBC14.

4.3 Architecture of HBase
The Hadoop database system consists of two parts: one
is the actual HBase layer and the other one represents the
Hadoop filesystem (HDFS). The latter was described in
the chapter before. HBase wraps the underlying filesys-
tem and adds new operations and tasks which will
appear to the HBase client as database table operations.
For this purpose HBase consists of three components:
the HBaseMaster, HRegionServer and HRegion. Their tasks
and synergy will be described in this chapter.

4.3.1 HBaseMaster
Connection to HBase. A client who wants to use the
HBase database system - in future terms called HClient
- first receives a connection to a HRegionServer (ex-
plained in Section 4.3.3) from the HBaseMaster. This
server knows about all connected HRegionServers and

12. Binary large object
13. Java Database Connectivity
14. Open Database Connectivity



A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 5

Figure 3: Architecture of HBase based on George [6]

can be queried for available connections for the HClient.
Additionally, to find a HBaseMaster server, the HClient
first looks up the address of the server in an overlay
coordination network called ZooKeeper. Hunt et al [7]
give an explanation of this service which aims to connect
distributed systems.

Heartbeat. The HBaseMaster needs to overwatch all
connected HRegionServers and uses Heartbeat mes-
sages (comparable to Heartbeats of HDFS) to check if
some servers went offline. Therefore if a HResionServer
crashes, the HBaseMaster has to reassign the HRegions
which were connected to the former server.

Load Balance. During runtime the HBaseMaster can
equalize the server load of HRegionServers. If some
servers contain a lot higher amount of HRegions and
thus they manage more data, those HRegions can be
reassigned to other HRegionServers.

Schema changes. The HBaseMaster also holds meta
data such as changes to the database schema. If tables
or specific columns are modified, the HBaseMaster deals
with altering the underlying database schema due to the
HRegionServers which hold portions of a database table
(see Section 4.3.3).

4.3.2 HRegionServer

Read and write operations. Once a HClient is connected
to a HRegionServer it can execute R/W15-tasks such as
GET, PUT or DELETE data. HRegionServers do not store
the payload data on their own filesystem: those R/W-
operations are forwarded into concrete HRegions. This
means a HRegionServer can be associated to one or more

15. Read/Write

Figure 4: Example of a StoreFile Compaction

underlying HRegions which will deal with the actual file
handling (see Section 4.3.3).

Handling HRegions. A HRegionServer manages un-
derlying HRegions. Because there can be multiple re-
gions connected to one HRegionServer, unequal load
balances can occur (described in Section 4.3.1). Therefore
the HBaseMaster issues split operations on HRegions.
This results in the HRegionServer receives this issue
and splits up a single HRegion into two, distributing
their associated data files. Besides those splits it is also
possible to merge HRegions together which is called
compaction of regions.

4.3.3 HRegion
Each HRegion holds a file called HLog. This log file
is stored in a HDFS-file and represents the WAL16 of
HBase. R/W-operations are directly appended to this
log file and will be flushed eventually to the underlying
filesystem. This allows a more efficient storage of data,
because only larger portions of R/W-operations are writ-
ten to a file.

Next to the WAL each HRegion comprises zero or
more so called Stores. The file operations of the WAL
are finally flushed to these Stores.

4.3.4 Store
Note, that Store == Column Family. So for each group
of columns (or attributes) in a database table there will
be one Store representing only this subset of columns. In
general, a CF17 is comprised of attributes which logically
belong together (e.g. a persons surname and firstname).

Storage. When the overlying HRegion flushes data to
its Stores, each Store receives a portion of row-based
R/W-operations belonging to that CF. The changes to the
according rows are applied and saved in the MemStore.
This is the representation of the Store and its data in the
main memory of the Store for more efficient reads and
writes. Eventually the MemStore will be written to the
embedded StoreFiles. Each Store holds several StoreFiles
which are explained in a while.

Compaction of StoreFiles. Because the underlying
filesystem is HDFS and its files are immutable, changes
to the Store are always written by records defining what
concrete part of a CF has been changed. Each record
receives a timestamp so the most recent change to a
database field is returned by a read-operation. Those
records and hence the representation of this Store is

16. Write-ahead-Log
17. Column Family



A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 6

written in many StoreFiles (because records can only
be created in new StoreFiles). To achieve faster lookups
- which involves less records to search for the most
recent timestamp and such - StoreFiles are periodically
compacted. As illustrated in Figure 4, a compaction
process can merge several StoreFiles to receive only a few
bigger files out of many small ones (minor compaction) or
one single big StoreFile (major compaction). The obsolete
StoreFiles will then be deleted by removing the HFiles
in the underlyingHDFS.

4.3.5 StoreFile and HFile
Each StoreFile exactly wraps one HFile. When data is
send from the Store to the StoreFile, then the data is
written to the HFile, that is directly mapped to a HDFS-
file. This is where data leave the HBase layer and moves
into the Hadoop filesystem.

HFiles are replicated in HDFS. When one file is
changed (throughout a put request), this change has to
be reflected among all replica. While this takes some
time, foreign read requests might either fetch the latest
updated version or the prior one. If a HClient wants to
make sure that a request always gets the latest change,
HBase can be configured to so called STRONG consis-
tency. Otherwise, requests will deliver best effort with
TIMELINE consistency. More details about this can be
found in the Apache reference guide [8].

5 APPLICATION

THE last chapters presented HBase on top of HDFS.
The following sections will give a clue about how

this distributed database system can be used or how it
is adapted to fit certain real-world applications. First the
motivation to use HBase is given by looking at Face-
book. After that, possible improvements of the HBase
implementation is presented in general. The last section
will then cover the HClient - API illustrating the major
methods to use.

5.1 Motivation using HBase
HBase features some important properties when it comes
to storing data in the cloud. The following advantages
are presented by Borthakur et al [9]. They are needed for
Facebook in order to allow an applicable implementation
of their Messaging-service.

• High random and sequential write throughput
• Efficient random and sequential reads
• Elasticity (add storage without overhead)
• Efficient and low-latency Consistency
• High availability and recovery
• Fault isolation (failure only affect a few people)
• Atomic operations (read, write, modify)
Also Facebook had to make sure that once HBase is in

production, from this single moment on over 500 million
people will be using the database system which then has
to be reliable and totally fault-tolerant.

Besides the Facebook Messaging-service HBase is also
used in Facebook’s Insights-service, which determines
and stores statistics about page visits, clicks and so on,
and Metrics System, which captures hardware loads of
Facebook’s servers.

5.2 Improving HBase

As stated before, Facebook had to adjust some imple-
mentation designs of Apache to realize the usage in such
a big context as its Messaging-service is.

Facebook decided to store data in smaller HBase
clusters to increase the fault isolation. Because in the
Hadoop system there are single-point-of-failures, HDFS-
NameNodes are wrapped by so called AvatarNodes wich
actually means a NameNode is replicated one time, so if
a NameNode fails, the copied NameNode can instantly
take the former place and the crashed one can restart.

In the HBase layer, every cluster has a single-point-
of-failure as there is only one HBaseMaster. To deal
with it, Facebook connects the master to the overlying
ZooKeeper network and will upload the HBaseMaster
state to a ZooKeeper-node so that on crash the state of
the cluster can be recovered. There are many more slight
changes which are given by Borthakur et al [9] which
often slightly increases some access times.

One thing to mention is that all HDFS-connections
to DataNodes are handled by Java’s RPC18 interface.
This might be a little slow. For this case, Islam et al
[10] showed an implementation of using RDMA19 over
JNI20 and a network called InfiniBand. This results in an
average of 20% lower latencies and higher throughput.

5.3 HClient - API

In General a client application just wants to use the
whole Hadoop filesystem in a transparent fashion. Thus,
once a cluster has been set up, a client will issue
some basic database-table operations like get, put,
delete. HBase delivers a very simple API to execute
such requests from the client’s point of view. In Java,
the main classes to use can be instantiated very easily:
Configuration. Sets up some basic information like

the IP21-address of the ZooKeeper-service.
HTable. In combination with the Configuration

this class connects to a specified database-table on which
one of the following commands can be issued.
GET. This request can fetch data specified by a row-

identifier in a random-access pattern.
SCAN. Similar to GET, but receives rows by range-

queries with a sequential-read.
PUT. Writes single values to a column within

a column-family. Therefore the family has to exist,
columns can be added in runtime.

18. Remote Procedure Call
19. Remote Direct Memory Access
20. Java Native Interface
21. Internet Protocol



A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 7

CF1 : logindata CF2 : contactdata
username firstname
password lastname

email
town

Table 1: User relation

DELETE. Removes values the same way like putting
ones.

The use of these few classes fulfills the major tasks
when just doing some I/O-operations with HBase. These
classes will also be used in a small Java-client presented
in Chapter 6. For a full documentation of the Java-API,
see Apache’s Snapshot of their version 2.0.0 [11].

6 DEMO

This chapter shows a small demo setup where a proof of
concept of HBase with HDFS shall be given. Only some
main features are considered and the following sections
describe the installed services and executed tasks. At the
end, a summarizing result will be given.

6.1 Setup

In this test the Hadoop system is set up in the so called
pseudo-distributed mode which means all needed services
are loaded on their own and act as being distributed but
indeed are all on the same local host machine. Hence the
following proof of concept runs on one test server22.

While Hadoop delivers an API for client accesses (i.e.
the HClient), for the purpose of this demo some more
operations are needed such as putting many rows of
data at once. To do so, the HClient is wrapped in a
self-implemented Java-Project23 which deals with fetch-
ing and reading multiple sets of data via the HClient
interface and also takes some times in milliseconds.

For the needs of the test the demo uses a User relation
consisting of two column families shown in Table 1.

6.2 Executed Tasks

This small demo will determine some scalability of the
database system with respect to read operations. Fur-
thermore in this small context the influence of major
compactions should be tested concerning reads of data.
The following tasks are executed and the needed time
of reading data has been measured:

1) Fetch 1000 users out of 1000 users
2) Fetch 1000 users out of 10000 users
3) Fetch 1000 users out of 100000 users
4) Fetch 1000 users out of 1000000 users
5) Fetch 1000* users out of 1000000 users - * users

experienced additionally five Updates in the WAL

22. System Specs: VirtualBox-VM with: CPU: 4 Cores up to 3,4 Ghz,
RAM: 2 GB, OS: Xubuntu64

23. https://github.com/fraxxor/hbase_java_client

0 100 200 300 400 500 600 700

1

2

3

4

5

6

216.6

139.2

148.4

323.6

288.8

195.6

301

151

208

428

490

154

65.4

91.4

121

228

183

178.8

69

164

173

579

254

386

ms

Get Average
Get First

Scan Average
Scan First

Figure 5: Results of the Performance Test

6) Fetch 1000* users out of 1000000 users - * users’ Up-
dates have been compacted by major compaction

Each fetch process is separated into reading by ran-
dom access (GET) and by sequential read (SCAN). The
needed time is taken from the first fetch process after
putting the data into the database and also an average
value is calculated through five fetch requests.

6.3 Results & Summary

Figure 5 shows the results of the small performance test
by comparing the measured times in milliseconds, taken
by the different tasks.

Even though the tests are not conclusive with respect
to real distributed systems, some trends can be seen in
the diagram. From Task 1 to 4 one can check that reading
requests seem to scale logarithmically compared to put
data. When increasing the database rows by factors like
1000 only small amounts of time have been added to
the read-responses. Due to some noise it can now be
answered whether random or sequential reads are faster
- they seem to perform quite equal compared to each
other. The question, if major compactions after doing

https://github.com/fraxxor/hbase_java_client


A REVIEW OF APACHE’S OPEN-SOURE IMPLEMENTATION OF BIGTABLE 8

some PUT-operations (Task 5 & 6) result in better reading
performance cannot be confirmed - the measured times
are lying closely together.

To put in all in a nutshell the proof of concept has been
made. The database system is scalable when consider-
ing reads. Still HBase is optimized for real distributed
production use and the mostly intended tasks will be
writing large amount of data very frequently. So mea-
suring the reads of a pseudo-distributed server in this
small demo is only one minor approach of testing.

ACKNOWLEDGEMENTS

Special Thanks go to the developers of this LATEX-
Template, published on http://www.ieee.org.

REFERENCES
[1] E. Levy and A. Silberschatz, “Distributed File Systems: Concepts

and Examples,” vol. 22, no. 4, pp. 321—-374, 1990. [Online].
Available: http://doi.acm.org/10.1145/98163.98169

[2] D. Borthakur, “HDFS architecture guide,” pp. 1–14, 2008.
[Online]. Available: http://pristinespringsangus.com/hadoop/
docs/hdfs_design.pdf

[3] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM
SIGMOD Record, vol. 39, no. 4, pp. 12–27, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=1978919

[4] V. K. Konishetty, A. K. K, K. Voruganti, and G. V. P. Rao,
“Implementation and Evaluation of Scalable Data Structure over
HBase,” in ICACCI ’12 Proceedings of the International Conference
on Advances in Computing, Communications and Informatics. New
York, NY, USA: ACM, 2012, pp. 1010–1018.

[5] A. Khetrapal and V. Ganesh, “HBase and Hypertable for
Large Scale Distributed Storage Systems. A Performance
evaluation for Open Source BigTable Implementations,” 2008.
[Online]. Available: http://scholar.google.com/scholar?hl=
en&btnG=Search&q=intitle:HBase+and+Hypertable+for+large+
scale+distributed+storage+systems+A+Performance+evaluation+
for+Open+Source+BigTable+Implementations#1

[6] L. George, “HBase Architecture 101 - Storage ,” 2009, accessed:
2014-12-07. [Online]. Available: http://www.larsgeorge.com/
2009/10/hbase-architecture-101-storage.html

[7] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “ZooKeeper:
Wait-free Coordination for Internet-scale Systems.” USENIX
Annual Technical . . . , vol. 8, p. 9, 2010. [Online]. Available: https:
//www.usenix.org/event/usenix10/tech/full_papers/Hunt.pdf

[8] Apache, “The Apache HBaseTM Reference Guide,” 2014, accessed:
2014-12-07. [Online]. Available: http://hbase.apache.org/book/
book.html

[9] D. Borthakur, S. Rash, R. Schmidt, A. Aiyer, J. Gray, J. S. Sarma,
K. Muthukkaruppan, N. Spiegelberg, H. Kuang, K. Ranganathan,
D. Molkov, and A. Menon, “Apache hadoop goes realtime at
Facebook,” Proceedings of the 2011 international conference on Man-
agement of data - SIGMOD ’11, p. 1071, 2011. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1989323.1989438

[10] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar,
H. Wang, H. Subramoni, C. Murthy, and D. K. Panda,
“High performance RDMA-based design of HDFS over
InfiniBand,” 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–12, Nov. 2012.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6468497

[11] The Apache Software Foundation, “HBase 2.0.0-SNAPSHOT
API,” 2014, accessed: 2014-12-12. [Online]. Available: https:
//hbase.apache.org/apidocs/index.html

Kevin Böckler Scientist and Enthusiast for
web development. For some years he creates
projects with PHP, Java, RoR, JS, and HTM-
L/CSS. Additionally he focuses on Clean Code
concepts.

ABBREVIATIONS

ACID Atomicity, Consistency, Isolation and
Durability

API Application programming interface
BASE Basically Available, Soft state, Eventually

consistent
BLOB Binary large object
CC Cloud Computing
CF Column Family
DFS Distributed File System
DNS Domain Name Space
HDFS Hadoop Distributed File System
I/O Input / Output
IP Internet Protocol
JDBC Java Database Connectivity
JNI Java Native Interface
KB KiloByte
MB MegaByte
MVCC Multi version concurrency control
ODBC Open Database Connectivity
RDMA Remote Direct Memory Access
RPC Remote Procedure Call
R/W Read/Write
WAL Write-ahead-Log

http://www.ieee.org
http://doi.acm.org/10.1145/98163.98169
http://pristinespringsangus.com/hadoop/docs/hdfs_design.pdf
http://pristinespringsangus.com/hadoop/docs/hdfs_design.pdf
http://dl.acm.org/citation.cfm?id=1978919
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:HBase+and+Hypertable+for+large+scale+distributed+storage+systems+A+Performance+evaluation+for+Open+Source+BigTable+Implementations#1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:HBase+and+Hypertable+for+large+scale+distributed+storage+systems+A+Performance+evaluation+for+Open+Source+BigTable+Implementations#1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:HBase+and+Hypertable+for+large+scale+distributed+storage+systems+A+Performance+evaluation+for+Open+Source+BigTable+Implementations#1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:HBase+and+Hypertable+for+large+scale+distributed+storage+systems+A+Performance+evaluation+for+Open+Source+BigTable+Implementations#1
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
https://www.usenix.org/event/usenix10/tech/full_papers/Hunt.pdf
https://www.usenix.org/event/usenix10/tech/full_papers/Hunt.pdf
http://hbase.apache.org/book/book.html
http://hbase.apache.org/book/book.html
http://portal.acm.org/citation.cfm?doid=1989323.1989438
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6468497
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6468497
https://hbase.apache.org/apidocs/index.html
https://hbase.apache.org/apidocs/index.html

	Overview
	Distributed File Systems
	Scalability
	Transparency
	Fault Tolerance
	Semantics
	Remote-Access

	HDFS - an implementation of a DFS
	Architecture of HDFS
	File semantics and replication
	Fault Tolerance
	HDFS Summary

	HBase
	NoSQL database systems
	Concurrency Model of database systems

	Reasons for HBase
	Architecture of HBase
	HBaseMaster
	HRegionServer
	HRegion
	Store
	StoreFile and HFile


	Application
	Motivation using HBase
	Improving HBase
	HClient - API

	Demo
	Setup
	Executed Tasks
	Results & Summary

	References
	Biographies
	Kevin Böckler


